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Nonlinear electrostatic waves in a magnetized plasma
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The modulational interaction of finite-amplitude high-frequency electrostatic waves propagating at an arbi-
trary angle to an external magnetic field with slow plasma motion is considered. A set of nonlinear evolution
equations describing the interaction is obtained. New types of solitary waves propagating at nearsonic speeds
are found.@S1063-651X~99!10408-2#

PACS number~s!: 52.35.Mw, 52.35.Fp, 52.35.Sb, 52.35.Hr
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I. INTRODUCTION

Wave modulation and occurrence of localized elec
fields and density depletions or enhancements in plas
have been extensively investigated over a period of m
than two decades@1–7#. Because of the many observatio
of wave modulation in applicational@8# and space@9–12#
plasmas, recently there has been renewed interest in the
linear behavior of electrostatic waves in magnetized plasm
Several authors have considered the interaction of h
frequency~hf! electrostatic waves with low-frequency~lf !
oscillations in a magnetized plasma@13–17#. In particular, it
has been found that the modulation of perpendicularly~to the
ambient magnetic field! propagating upper-hybrid waves b
acoustic type lf waves can lead to the appearance of sm
as well as cusped wave packets. It was also found@17# that
the modulation of lower-hybridlike waves by Alfve´n-like
waves can also lead to similar results. However, in all s
studies only exactly or nearly parallel or perpendicu
propagation of the hf waves was considered. It is thus
interest to study the properties of nonlinear waves propa
ing in arbitrary directions.

In this paper, we consider the slow modulation of hf ele
trostatic electron waves propagating at an arbitrary angl
the external magnetic field. The evolution equations gove
ing the nonlinear coupling of the high- and low-frequen
waves are obtained. It is found that quasistationary sub
nearsonic localized wave envelopes can propagate in al
rections, but their profiles depend on the angle of propa
tion as well as the other plasma parameters. New type
nearsonic solitary wave solutions are found.

II. BASIC EQUATIONS

We consider hf electrostatic waves in a magnetiz
plasma. The ambient magnetic fieldB0 is along thez axis.
The fluid equations governing the motion of the electro
and ions are

] tna1“•~naua!50, ~1!

] tua1ua•“ua5
qa

ma
S E1

1

c
ua3B0D2

gaTa
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¹na , ~2!
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“•E54pqa~ni2ne!, ~3!

where the subscriptsa5e,i stand for the electrons and ion
respectively.

We assume that the electric fieldEh for the hf wave lies in
thex,z plane, and that the angle between the electric fieldEh

and the constant external magnetic fieldB0 is u(0<u
<p/2). The hf field may be expressed as

Eh52“Fh5 1
2 E~x,z,t !exp~2 iv0t !1c.c., ~4!

wherev0 is the frequency andE(x,z,t) is the amplitude of
the hf ~or pump wave! electric field. Because of nonlinea
interactions the wave amplitude varies slowly in time a
space. We can thus writene5n01ne

l 1ne
h , ni5n01ni

l , ue

5ue
l 1ue

h , and E5El1Eh, where n0 denotes the numbe
density of the plasma in equilibrium. The subscriptsl andh
stand for the high- and low-frequency perturbations, resp
tively. For modulational interactions, the hf and lf regim
are widely separated, so that the lf response appears
modulation of the equilibrium or background quantities@1#.

Substituting Eq.~4! into Eqs.~1!–~3!, we obtain the equa-
tions describing the hf motion

] tne
h1]x~nuex

h !1]z~nuez
h !50, ~5!

] tue
h52

e

me
S Eh1

1

c
ue

h3B0D2
ute

2

n
“ne

h , ~6!

“•Eh524pene
h , ~7!

whereute5(geTe /me)
1/2 is the thermal velocity of electron

andn5n01ne
l is the slowly modulated background electro

density.
In general, the direction of the lf modulation can be d

ferent from that of wave propagation. For optimum couplin
it is expected that the modulation should be along the pro
gation direction, say, at an angleu to B0. Thus, without loss
of generality we can assume that the waves propagate in
x,z plane. Substituting Eq.~4! into Eqs.~5!–~7!, we obtain
for the modulated hf waves,

~] t
41vce

2 ] t
2!¹2Fh1vpe

2 L 1Fh5vpe
2 L 2Fh, ~8!
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where ¹25]x
21]z

2 , vpe5(4pn0e2/me)
1/2, and vce

5eB0 /mec are the electron plasma and gyro frequenci
respectively. We have also defined

L15~¹2] t
21vce

2 ]z
2!~12gelDe

2 ¹2!

and

L25$] t
2@]x~N]x!1]z~N]z!#1vce

2 ]z~N]z!%~gelDe
2 ¹221!,

where lDe5(Te/4pn0e2)1/2 is the Debye length andN
5ne

l /n0 is the normalized electron perturbation densi
When the nonlinear coupling term on the right-hand side
Eq. ~8! is neglected, the latter one describes linear hf] t
.vpe ,vce) electrostatic waves propagating obliquely to t
external magnetic field.

The lf motion consists of obliquely propagating genera
mixed ion-acoustic and ion-cyclotron waves driven by t
ponderomotive force of the hf waves. The governing eq
tions are then

] tna1]x~nauax!1]z~nauaz!50, ~9!

ma] tua5qaS 2“w1
1

c
ua3B0D2

Ta

na
“na1Fpa ,

~10!

wherea5e,i andw is the lf perturbation potential. For sim
plicity, we have dropped the superscriptl for the lf quanti-
ties. We shall also use the quasineutrality conditionni5ne
valid for long wavelength lf perturbations. Furthermore, w
have defined@14,15#

Fpa52ma^ua•“ua&, ~11!

which is the ponderomotive force acting on the charged p
ticles by the nonlinear hf field with a slowly varying ampl
tude. They are obtained by averaging~over the fast time! of
the nonlinear terms in the equations of motion@1–3#. Here
the angular brackets denote averaging over the fast mot

It is convenient to write Fax52]xQax and Faz
52]zQaz, where

Qax5
qa

2

4ma
F v0

2uEx
hu2

~v0
22vca

2 !2
1

uEz
hu2

v0
22vca

2 G , ~12!

Qaz5
qa

2

4ma
F uEx

hu2

v0
22vca

2 1
uEz

hu2

v0
2 G , ~13!

where we have made use of the linear solutions of the
electron equations~5! and ~6!.

Since the ponderomotive force is inversely proportiona
the mass of the particles, we can ignoreQix andQiz . From
Eqs. ~9! and ~10!, assuming cold ions, we obtain the equ
tions for the lf plasma response

~] t
21vci

2 !] t
2N2cs

2@¹2] t
21vci

2 ]z
2#w50, ~14!

w5N1Qez, ~15!

where electron inertia in the lf ion-dominated motion h
been neglected, the lf electrostatic potentialw has been nor-
,

.
f

-

r-

n.

f

o

-

malized byTe /e, andQex andQez have been normalized b
Te . Note that because the modulation is in the direction
the hf wave propagation,Qex does not contribute to the non
linear coupling. Furthermore, although the lf waves are n
linearly driven their amplitude remains small, so that se
nonlinearities are neglected.

From Eqs.~14! and ~15! we easily obtain

@~] t
21vci

2 2cs
2¹2!] t

22cs
2vci

2 ]z
2#N

5cs
2~¹2] t

21vci
2 ]z

2!Qez, ~16!

which describes electrostatic ion waves in the presence o
ponderomotive force. Note that for arbitrary angle of prop
gation the ion-acoustic and ion-cyclotron waves are linea
coupled.

Equations~8! and~16! describe the nonlinear modulatio
of hf electrostatic waves by lf motion in a magnetize
plasma. As is the case for most such modulations, for the
waves the dominant nonlinearity comes from their coupl
to the lf density perturbations, and for the lf waves it is fro
the ponderomotive force of the hf waves acting on the el
trons.

III. THE EVOLUTION EQUATIONS

In the following, we consider the modulated amplitude
the hf waves. It is convenient to define the dimensionl
coordinatej such thatrs]x5sinu]j , where rs5cs /vci is
the effective gyroradius. Separating the fast and slow mo
@1–3# by letting] t' iv01]t , where]t!v0, we obtain from
Eq. ~8!,

22i e]tE1PE1Q]j
2E5kNE, ~17!

where we have definede5v0vci /vpe
2 5O(me /mi)!1, t

5vcit, E5E/A8pn0Te,

P52
v0

42v0
2vuh

2 1vpe
2 vce

2 cos2u

vpe
2 ~2v0

22vuh
2 !

,

vuh5(vpe
2 1vce

2 )1/2 is the upper-hybrid frequency,Q
5kvA

2/c2, vA5AB0
2/4pmin0 is the Alfvén speed, andk

5(vce
2 cos2u2v0

2)/(2v0
22vuh

2 ),0. We note that for weakly
nonlinear modulationP'0, since the hf waves should sa
isfy the dispersion relation

v0
42v0

2vuh
2 1vpe

2 vce
2 cos2u50 ~18!

in the linear limit. Here we keep it finite in order to allow fo
a small frequency shift, which may arise because of
modulation. Foru'0, one recovers the electron plasm
waves, and foru'p/2 one recovers the upper-hybrid wav
~here we do not consider resonances and cutoffs!. In the
latter case Eq.~17! reduces to that for upper-hybrid wav
modulation@13–15#.

For the lf density modulation, Eq.~16! yields

@~]t
22]j

211!]t
22cos2u ]j

2#N5A~]t
21cos2u!]j

2uEu2,
~19!

where A[vpe
2 (v0

22vce
2 cos2u)/2v0

2(v0
22vce

2 ).0. Equations
~17! and ~19! describe the evolution of the modulated
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electrostatic waves. The former is a nonlinear Schro¨dinger
equation with the nonlinear term arising from th
ponderomotive-force-driven density response, given by
latter equation. The equations are similar in structure to th
describing upper-hybrid wave modulation@13–15#. From
Eqs. ~17! and ~19! one can investigate the nonlinear evol
tion of modulational instabilities in the many possible p
rameter regimes. To our knowledge, there does not exist
general method of solution for these equations. For hf wa
propagating perpendicularly (u5p/2) to the external mag
netic field, Eq.~19! becomes

~]t
22]j

211!N5
1

2

vpe
2

v0
22vce

2 ]j
2uEu2, ~20!

which is similar to the corresponding equation for upp
hybrid waves@15#.

IV. MODULATION OF OBLIQUELY PROPAGATING
WAVES

In general, Eqs.~17! and~19! are difficult to solve. Many
authors have considered the limits of Langmuir (u'0)
@1–5# and upper-hybrid (u 'p/2) @14–16# wave modulation
by various lf perturbations. They derived the nonlinear e
lution equations governing the slowly varying amplitude a
found that under appropriate conditions steadily propaga
smooth as well as cusped envelope solutions can exit.

We study the modulation of oblique propagation of
electrostatic waves and look for quasistationary localized
lutions. The latter are often considered to be the satura
states of the corresponding modulational instabilities. A
cordingly, we letN(j)5N(h) and E(j,t)5E(h)exp@i(Q t
1Gj)#, whereh5j2Mt andM is the speed~normalized by
the ion-acoustic speed! of the localized wave packet. Equa
tion ~17! yields G52eM /Q for the phase factor, and th
equation for the amplitudeE(h) of the wave envelope

Q]h
2E~h!1DE~h!2kN~h!E~h!50, ~21!

where D5P12eQ2e2M2/Q is the total nonlinear fre-
quency shift. The latter allows for departures from the line
hf wave frequency arising from the nonlinear coupling. No
that sinceP'0 and e2M2/Q!1, the main term inD is
2eQ, which is an arbitrary constant introduced in the redu
tion of Eq.~17! to the ordinary differential equation~21!, and
will be determined by amplitude of the modulated waves

From Eq.~19!, we obtain

$M2@~M221!]h
211#2cos2u%N~h!

5A~M2]h
21cos2u!E 2~h! ~22!

for the density modulation. Note thatD.0, k,0, Q,0,
andA.0.

Equations~21! and~22! are the general coupled nonline
ordinary differential equations describing the amplitude
the quasistationary propagating hf electrostatic waves
magnetized plasma. They can easily be integrated num
cally for any of the many possible parameter regimes. Si
the profile of the solution depends strongly on the relat
betweenN andE, and the parametersk andA also containu;
e
se

-
ny
s

-

-

g
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e
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it is clear from Eq.~22! that the angle of wave propagatio
with respect to the external magnetic field is an import
parameter in determining the profile of the solution. In t
limit u50, we recover the relationN5AE 2/(M221) with
A5vpe

2 /2v0
2 for Langmuir wave modulation@1#. For u

5p/2, we have the relation@(M221)]h
211#N5A]h

2E 2

with A5vpe
2 /2(v0

22vce
2 ) for upper-hybrid wave modulation

@15#. It is also of interest to note that for static respon
(M50), one hasN52AE 2 for any u. So that static modu-
lation of waves propagating at any angle to the external m
netic field physically behaves like that for the Langmu
waves. In general, the modulation leads to propagating
veloped wave. Localized solutions similar to the Langm
and upper-hybrid solitary waves can exist for near-paralle
near-perpendicular wave propagation@13–16#. In the follow-
ing we shall consider regimes, which have not yet been
dressed in the literature.

For ]h
2!1 andM2]h

2!cos2u, one obtains from Eq.~22!,

N5
Acos2u

M22cos2u
E 2~h!, ~23!

which is of similar form to that of the density modulation b
Langmuir waves. However, here the angleu can strongly
affect the magnitude of the density response. Substitu
Eq. ~23! into Eq. ~21!, one obtains

Q]h
2E~h!1DE~h!2

kAcos2u

M22cos2u
E 3~h!50, ~24!

describing the evolution ofE(h). Equation~24! has the lo-
calized solution

E~h!5E0sech~h/a!, ~25!

where E05@D(M22cos2u)/kAcos2u#1/2 is the amplitude of
the wave envelope, anda5(2Q/D)1/2 is its width. Clearly,
one must haveD.0, and the normalized speed of this so
tary wave must satisfyM2,cos2u.

We now present two solitary wave solutions, which se
not to have been discussed before. In the the nearsonic
gime M2215O(e), one gets from Eq.~22!,

N~h!'
AM2

M22cos2u
]h

2E 21
Acos2u

M22cos2u
E 2 ~26!

for the density modulation. Substituting Eq.~26! into Eq.
~21! and integrating once, one obtains for the field amplitu
E(h),

~dh̃E!22
E 22E 4/E 0

2

12E 2/E !
2

50, ~27!

whereh̃5h/a, E !
25vA

2(M22cos2u)/2AM2c2, and for local-
ized solutions, the integration constant has been set to z
Note thatE !

2 and E 0
2 can be negative and are of oppos

signs.
The behavior of the solutions of Eq.~27! can easily be

visualized by treating the latter as the energy integral o
classical particle in a potential well~the Sagdeev potentia
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@18#!. RecallingA.0, k,0, andD.0, we see that~Eq. 27!
can admit smooth solutions ifE !

2,0 ~i.e., M2,cos2u and
E 0

2.0), and cusped solutions ifE !
2.0 ~i.e., M2.cos2u and

E0,0). In the latter case the denominator has a zero
produces an infinite wall in the Sagdeev potential. The c
responding solution is not analytic and has a cusp at the p
amplitude, but its profile differs from that of Porkolab an
Goldman@14#, and Shapiro@17#. It may also be of interest to
note that these solutions can be written in closed but imp
forms. For the smooth solution, one can write

E 25
E 0

2csch2c

coth2c2E 0
2/E !

2
, ~28!

where

c5A2E 0
2

E !
2 S arctanAE 22E !

2

E 0
22E 2 2

p

2 D 2h̃,

which we note containsE 2. For the cusped solution one ca
write

E 252
E 0

2sech2c

tanh2c2E 0
2/E !

2
, ~29!

where

c5A2E 0
2

E !
2 arctanAE !

22E 2

E 22E 0
22h̃,
li-

,

J.
d
r-
ak

it

and care should be taken in assembling the piecewise s
tions. The transcendental solutions~28! and ~29! may be
verified by direct substitution.

V. DISCUSSIONS

In this paper we have extended the earlier investigati
on Langmuir and upper-hybrid wave modulation to hf ele
tron wave propagation at arbitrary angles to the exter
magnetic field. The generalized equations describing
evolution of the hf wave envelope and the lf electrosta
background density modulation are obtained. It is shown t
the wave modulation is strongly propagation-angle dep
dent. For quasistationary propagation, new regimes of lo
ized smooth and cusped solutions for the modulated w
envelope are found. The corresponding solitary waves ar
small but finite amplitude and can propagate at sub and n
sonic speeds. Our results can be useful for more precise i
tification of the nonlinear waves and the corresponding d
sity modulations in the data from the ionospheric a
magnetospheric observations.
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