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Nonlinear electrostatic waves in a magnetized plasma
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The modulational interaction of finite-amplitude high-frequency electrostatic waves propagating at an arbi-
trary angle to an external magnetic field with slow plasma motion is considered. A set of nonlinear evolution
equations describing the interaction is obtained. New types of solitary waves propagating at nearsonic speeds
are found[S1063-651X99)10408-3
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I. INTRODUCTION V-E=4mq,(n—ny), (3

Wave modulation and occurrence of localized electricwhere the subscripte=e,i stand for the electrons and ions,
fields and density depletions or enhancements in plasmagspectively.
have been extensively investigated over a period of more We assume that the electric fied for the hf wave lies in
than two decadefl—7]. Because of the many observations thex,z plane, and that the angle between the electric #ld
of wave modulation in applicationdB] and spacd9-12] and the constant external magnetic fidl) is #(0<6
plasmas, recently there has been renewed interest in the nos-7/2). The hf field may be expressed as
linear behavior of electrostatic waves in magnetized plasmas. N hoa )
Several authors have considered the interaction of high- E'=—-VO'=3E(X,z,t)exp(—iwgt) +c.c., (4)
frequency (hf) electrostatic waves with low-frequendif) . . .
osgillatiozs in a magnetized plasriiE3—17. In pag[iculzf\!{?,f it Whereaw, is the frequency an&(.x,z,t) is the amphtudg of
has been found that the modulation of perpendiculddyhe f[he hf (pr pump wavé electr_|c field. Because Of. no_nhnear
ambient magnetic fieldpropagating upper-hybrid waves by interactions the wave a_mplltude \{aner? slowly in tllme and
acoustic type If waves can lead to the appearance of smooftPace- r\1Ne can thusl W”:ee: Mo+ Net N, NI=No+ N, Ue
as well as cusped wave packets. It was also fi¥dithat ~=UetUe, and E=E +E", wheren, denotes the number
the modulation of lower-hybridlike waves by Alfadike  density of the plasma in equilibrium. The subscripendh
waves can also lead to similar results. However, in all suct$tand for the high- and low-frequency perturbations, respec-
studies 0n|y exact|y or nea”y para||e| or perpendicu|artive|y. For modulational interactions, the hf and If regimes
propagation of the hf waves was considered. It is thus ofire widely separated, so that the If response appears as a
interest to study the properties of nonlinear waves propagathodulation of the equilibrium or background quantitjés.
ing in arbitrary directions. Substituting Eq(4) into Egs.(1)—(3), we obtain the equa-

In this paper, we consider the slow modulation of hf elec-tions describing the hf motion
trostatic electron waves propagating at an arbitrary angle to
the external magnetic field. The evolution equations govern-
ing the nonlinear coupling of the high- and low-frequency
waves are obtained. It is found that quasistationary sub and
nearsonic localized wave envelopes can propagate in all di-
rections, but their profiles depend on the angle of propaga-
tion as well as the other plasma parameters. New types of V.-E'= —47ren2, (7)
nearsonic solitary wave solutions are found.

ani+ o, (null) + d,(nufl) =0, (5)
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whereu,e= (yeTe/Me) Y2 is the thermal velocity of electrons
Il. BASIC EQUATIONS andn=ngy+ n, is the slowly modulated background electron
] ) ) ~density.

We consider hf electrostatic waves in a magnetized |y general, the direction of the If modulation can be dif-
plasma. The ambient magnetic fiely is along thez axis.  ferent from that of wave propagation. For optimum coupling,
The fluid equations governing the motion of the electrons is expected that the modulation should be along the propa-
and ions are gation direction, say, at an angfeto B,. Thus, without loss
of generality we can assume that the waves propagate in the

INaF V- (NyU,) =0, (1) X,Z plane. Substituting Eq4) into Eqgs.(5)—(7), we obtain
for the modulated hf waves,
vu,—de (g Ly gy |- Ylayn (2
et Vo= 1| B G UaxBo] = = =V (004 @2 V2D N+ 02 L 1 DN = w2 L0, (8)
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where V2=g5+d5, wpe=(4moe?/my)¥%  and w.  malized byT./e, andQ., andQ,, have been normalized by
=eBy,/mc are the electron plasma and gyro frequenciesT.. Note that because the modulation is in the direction of

respectively. We have also defined the hf wave propagatior., does not contribute to the non-
. oo linear coupling. Furthermore, although the If waves are non-
L1= (V0 + 05ed;) (1= vehpeV7) linearly driven their amplitude remains small, so that self-
nonlinearities are neglected.
and From Egs.(14) and (15) we easily obtain
Ly={07 dx(Nx) +d,(NG,) |+ 05ed,(NI) H yeh §eV 2~ 1), [(72+ 0% — 2V2) 2 202 2]N
where \p=(T/4mnye?)'? is the Debye length andN = C2(V252+ w2,6%) Qoy, (16)

= nL/no is the normalized electron perturbation density.
When the nonlinear coupling term on the right-hand side ofwvhich describes electrostatic ion waves in the presence of the
Eqg. (8) is neglected, the latter one describes linear &f ( ponderomotive force. Note that for arbitrary angle of propa-
> wpe,wce) €lectrostatic waves propagating obliquely to thegation the ion-acoustic and ion-cyclotron waves are linearly
external magnetic field. coupled.

The If motion consists of obliquely propagating generally  Equations(8) and(16) describe the nonlinear modulation
mixed ion-acoustic and ion-cyclotron waves driven by theof hf electrostatic waves by If motion in a magnetized
ponderomotive force of the hf waves. The governing equaplasma. As is the case for most such modulations, for the hf

tions are then waves the dominant nonlinearity comes from their coupling
to the If density perturbations, and for the If waves it is from
N+ dx(NgUax) +3,(NGU,Z) =0, (9 the ponderomotive force of the hf waves acting on the elec-
1 trons.
m,du,=q,| —Ve+ -u,XBy| ——Vn,+F,,,
a%tla=Aa $T a0 n, ¢ P ll. THE EVOLUTION EQUATIONS
(10)

In the following, we consider the modulated amplitude of
wherea=e,i andg is the If perturbation potential. For sim- the hf waves. It is convenient to define the dimensionless
plicity, we have dropped the superscriptor the If quanti-  coordinateé such thatpsd,=sin6d;, where ps=cs/wg; is
ties. We shall also use the quasineutrality conditiprrn,  the effective gyroradius. Separating the fast and slow motion
valid for long wavelength If perturbations. Furthermore, we[1-3] by lettingd;,~iwq+ d,, whered <, we obtain from
have defined14,15 Eq. (8),

Foo=— M, (U, VU,), (11) —2i €0, &+ PE+ Qi2E= kNE, (17)
which is the ponderomotive force acting on the charged parwhere we have definedzwowci/wge: o(m./m)<1, 7

ticles by the nonlinear hf field with a slowly varying ampli- =, .t, £&=E/\[8mn,T,,
tude. They are obtained by averagifayer the fast timgof

the nonlinear terms in the equations of motidr-3]. Here wé—w%wﬁh-i- wgewgecosz@
the angular brackets denote averaging over the fast motion. P=- 2 > 3 )
It is convenient to write F ,=—4d,Q,, and F,, wpe( 209~ W)
= ~9Quqz Where wun= (w5t wi) Y is the upper-hybrid frequencyQ
92 [ wg|Eh|2 |Eh|2 =Kv§/cz, Vpa= \/502/47Tmin0 is the Alfven speed, andk
Qu=7 =t (12)  =(w2L080—wd)(2wi—w?)<0. We note that for weakly
mal(wo_ww) @0~ Wea nonlinear modulatiorP~0, since the hf waves should sat-
isfy the dispersion relation
2 Eh|2 |Eh|2
_ qa | X z 4 2 2 2 2 S" —
Qaz—4m P 2| (13 Wo— W@ pt WpweLOS =0 (18
a Ca 0

) ) in the linear limit. Here we keep it finite in order to allow for
where we have made use of the linear solutions of the h§ small frequency shift, which may arise because of the
electron equationt5) and (6). o _ modulation. For#~0, one recovers the electron plasma

Since the ponderomotive force is inversely proportional toyayes, and fom~ /2 one recovers the upper-hybrid waves
the mass of the particles, we can ign@g andQ;;. From  (here we do not consider resonances and cytoffs the
Egs. (9) and(10), assuming cold ions, we obtain the equa-|atter case Eq(17) reduces to that for upper-hybrid wave
tions for the If plasma response modulation[13—15.

For the If density modulation, Eq16) yields
(+2)IN-CU V23 + 03 Rle=0,  (14) Y Wy

[(92— 37+ 1)92—cos 0 gz IN=A(52+ cos 0) 32| €|,
¢=N+Qey, (15 (19

where electron inertia in the If ion-dominated motion haswhere A= w? (05— wZ.C00)/2w)(wi—wi)>0. Equations
been neglected, the If electrostatic potentiahas been nor- (17) and (19) describe the evolution of the modulated hf
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electrostatic waves. The former is a nonlinear Sdimger it is clear from Eq.(22) that the angle of wave propagation
equation with the nonlinear term arising from the with respect to the external magnetic field is an important
ponderomotive-force-driven density response, given by th@arameter in determining the profile of the solution. In the
latter equation. The equations are similar in structure to thoskmit =0, we recover the relatioN=A&?/(M?—1) with
describing upper-hybrid wave modulatigdi3—15. From A:wge/zwg for Langmuir wave modulatioq1]. For 6
Egs.(17) and (19) one can investigate the nonlinear evolu- = /2, we have the relatior[(Mz—l)&f?ﬂL l]Non’@S2
tion of modulational instabilities in the many possible pa-yith A=w,2)e/2(w(2)—w§e) for upper-hybrid wave modulation
rameter regimes. To our knowledge, there does not exist any 5] |t is also of interest to note that for static response
general method of solution for these equations. For hf wavegy — ), one hasi=—A&2 for any 6. So that static modu-

propagating perpendicularlyd 7/2) to the external mag- |ation of waves propagating at any angle to the external mag-

netic field, Eq.(19) becomes netic field physically behaves like that for the Langmuir
1 2 waves. In general, the modulation leads to propagating en-

(&f—a§+1)N= 1 2wp82 ﬁ§|5|21 (20) veloped wave. .Loca!ized solutions sim_ilar to the Langmuir

2 wy— wge and upper-hybrid solitary waves can exist for near-parallel or

near-perpendicular wave propagat[d3—16. In the follow-
which is similar to the corresponding equation for upper-ing we shall consider regimes, which have not yet been ad-
hybrid waves[15]. dressed in the literature.
For #5,<1 andM?5% <cog¢, one obtains from Eq(22),
IV. MODULATION OF OBLIQUELY PROPAGATING

WAVES Aco< 6

N= 3 652( 7), (23
In general, Eqs(17) and(19) are difficult to solve. Many —co

authors have considered the limits of Langmuii~0) S o . .
. . which is of similar form to that of the density modulation b

[1-5] and upper-hybrid € ~ 7/2) [14-1§ wave modulation Langmuir waves. However, here the angilécan strongly g
by various If perturbations. They derived the nonlinear BVO- e ot the magnitude of th('a density response. Substituting
lution equations governing the slowly varying amplitude and (23) into Eq. (21), one obtains '
found that under appropriate conditions steadily propagatin q- a- '
smooth as well as cusped envelope solutions can exit. «AcoL0

We study the modulation of oblique propagation of hf QaiE( ) +AE(n)— 2= coZd
electrostatic waves and look for quasistationary localized so-
lutions. The latter are often considered to be the saturate . . .
states of the corresponding modulational instabilities. Ac_ge?crl(tj)mgl th_e evolution oE(7). Equation(24) has the lo-
cordingly, we letN(£)=N(7) and &(&,7)=E(n)exdi(@ Callzed solution
+I'¢)], wheren=¢— M7 andM is the speednormalized by _
the ion-acoustic spegaf the localized wave packet. Equa- &) =Eosectin/a), (25

tion (17) yIE|dS I'= —GM/Q for the phase factor, and the where ((:O:[A(MZ—COSZQ)/KACOSZH]]'/Z is the amplitude of
equation for the amplitudé( ) of the wave envelope the wave envelope, ara=(— Q/A)Y2 s its width. Clearly,
one must have\>0, and the normalized speed of this soli-
QI2E(m)+AE()— kN(9)E(7) =0, (21) P

tary wave must satisfiV >< cog6.
where A=P+2e0®—€*M?/ Q is the total nonlinear fre- We EOW pk:r)esenfjﬁwo solléa[:)y ¥vave lsolﬁtlorr\]s, which seem
guency shift. The latter allows for departures from the linea /0! 0 Nave been discussed before. In the the nearsonic re-
hf wave frequency arising from the nonlinear coupling. Note

=0, (24

gime M?—1=0(e), one gets from Eq22),

that sinceP~0 and €2M?/Q<1, the main term inA is 2 Aco2d
2e0, which is an arbitrary constant introduced in the reduc- N(7)~—> PEX + ————E? (26)
tion of Eq.(17) to the ordinary differential equatiai21), and M?=cos¢ 7"~ M?-cosd

will be determined by amplitude of the modulated waves.

From Eq.(19), we obtain for the density modulation. Substituting E(R6) into Eq.

(21) and integrating once, one obtains for the field amplitude

{M2[(M?=1)d +1]—cog}N(7) &(m),
=A(M?9;+cog6)£%(7) (22 £2- €463
(d782- ——— =0, (27
for the density modulation. Note that>0, k<0, Q<0, 1-&9¢ex

andA>0.

Equations(21) and(22) are the general coupled nonlinear wheren= n/a, £2=v4(M?—cog6)/2AM?c?, and for local-
ordinary differential equations describing the amplitude ofized solutions, the integration constant has been set to zero.
the quasistationary propagating hf electrostatic waves in &lote that€? and SS can be negative and are of opposite
magnetized plasma. They can easily be integrated numersigns.
cally for any of the many possible parameter regimes. Since The behavior of the solutions of EqR7) can easily be
the profile of the solution depends strongly on the relatiornvisualized by treating the latter as the energy integral of a
betweerN and&, and the parametersandA also contairy; classical particle in a potential welthe Sagdeev potential
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[18]). RecallingA>0, k<0, andA>0, we see thatEq. 27 and care should be taken in assembling the piecewise solu-
can admit smooth solutions #2<0 (i.e., M2<cosd and tions. The transcendental solutiof@3) and (29) may be
£2>0), and cusped solutions &2>0 (i.e., M?>cogg and  verified by direct substitution.

£0<0). In the latter case the denominator has a zero and
produces an infinite wall in the Sagdeev potential. The cor-
responding solution is not analytic and has a cusp at the peak
amplitude, but its profile differs from that of Porkolab and

V. DISCUSSIONS

Goldman[14], and Shapirg17]. It may also be of interest to

In this paper we have extended the earlier investigations

note that these solutions can be written in closed but implicien Langmuir and upper-hybrid wave modulation to hf elec-

forms. For the smooth solution, one can write

o2 Eaeschty 08
cotlfy—E3/£2°

where

_EO
52

£2-¢&2 x
£2-e2 2

which we note contain§?. For the cusped solution one can
write

b= ( arcta -7,

Easechy
tantfy—E£3/£2

[-£2 [e2-g2 _
=\ —5 arctam\/ ———5— 7,
£2 £2-¢&k

£2=

(29

where

tron wave propagation at arbitrary angles to the external
magnetic field. The generalized equations describing the
evolution of the hf wave envelope and the If electrostatic
background density modulation are obtained. It is shown that
the wave modulation is strongly propagation-angle depen-
dent. For quasistationary propagation, new regimes of local-
ized smooth and cusped solutions for the modulated wave
envelope are found. The corresponding solitary waves are of
small but finite amplitude and can propagate at sub and near-
sonic speeds. Our results can be useful for more precise iden-
tification of the nonlinear waves and the corresponding den-
sity modulations in the data from the ionospheric and
magnetospheric observations.
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